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ABSTRACT

Context. Deriving the Point Spread Function (PSF) of an astronomicalimage is a required step in tasks such as crowded field
photometry, star/galaxy separation, galaxy morphology, as well as image quality control.
Aims. We present the techniques implemented in PSFE, a companion program to the SE (Bertin & Arnouts 1996) source
extraction package, to extract, model and characterise thePSF of astronomical images in a robust and fully automated way.
Methods. We show how PSFE can recover variable PSFs of arbitrary shapes from undersampled data, using decompositions on an
appropriate set of basis vectors.
Results. Results on images coming from simulations as well as mosaic cameras such as MEGACAM and WIRCam are presented.
Conclusions. PSFE is released to the community under the CeCILL Public Licence.
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1. Introduction

The flux response of modern imaging devices is close to lin-
ear over a large dynamic range and translation-invariant toa
good approximation within the observed field of view. Hence
for such devices a Point Spread Function (PSF) can be de-
rived that defines much of their instrumental performance (be-
sides noise properties). In Astronomy, knowing the PSF is key
to many scientific analysis tasks such as detection (matchedfil-
tering over stationary background noise), star/galaxy separation,
galaxy morphology, weak shear analysis or differential photom-
etry. In large sky surveys, which can comprise millions of expo-
sures, the PSF and its variations can be used in quality control
procedures to detect efficiently instrumental problems such as
defocused or abnormally aberrated exposures, exceedinglybad
atmospheric conditions and guiding errors.

The PSFE (for PSF EXtraction) software tool was written
as a companion program to the SE source extraction
package (Bertin & Arnouts 1996), with the purpose of providing
a universal PSF modelling and measurement tool. The PSFE

prototype has been developed over many years and has already
been used in several stellar studies relying on PSF-fitting pho-
tometry (e.g. Kalirai et al. 2001a,2001b, Moraux et al. 2003,
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Kendall et al. 2005, Lodieu et al. 2006, Delorme et al. 2008),
as well as galaxy morphology (Bertin et al., in preparation).

This article describes all the steps followed by PSFE for
modelling and characterising the PSF. First, in§2 and§3 we
introduce our approach to modelling the PSF profile and its vari-
ations. In§4 we present our recipe for identifying point-sources
suitable as realisations of the local Point Spread Function. In §5
we propose some metrics for measuring image quality based on
the PSF. Finally we comment our results and point out possible
improvements in§8.

2. Modelling

For astronomers, the most important parameter characterising
the PSF is the Full-Width-at-Half-Maximum (FWHM) of the
main PSF lobe, expressed in arc seconds. The smaller the
FWHM, the sharper the images. Without adaptive optics, on
ground-based telescopes with apertures≫ 10 cm, the PSF
FWHM is dominated by the contribution from atmospheric
turbulence, the so-calledseeing. In such conditions, for long
exposures (> 1 s) the angular Modulation Transfer Function
(MTF) is well represented by exp(−ω/ωc)−5/3 as expected from
a Kolmogorov turbulence model, withωc ≈ 2.921/FWHM (e.g.
Roddier 1981, Racine 1996). There is no simple analytical ex-
pression in real space corresponding to this MTF, however the
core is close to Gaussian, and the profile is well fitted by a Moffat
(1969) function (Trujillo et al. 2001).

Analytical functions such as Moffats, Lorentzians or
Gaussian mixtures have been used with success to model the
PSF of ground-based instruments (Franz 1973, Penny 1979,
Buonanno et al. 1983, Gilliland & Brown 1987, Schechter et
al. 1993). They can also provide a satisfactory match to under-
sampled data (FWHM<∼ 2.5 pixels) after the functions have
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been convolved with the intra-pixel response function (Stetson
1987, Buonanno & Iannicola 1989, Penny & Leese 1996).
Unfortunately the analytical functions above are poor approxi-
mations of diffraction-limited PSFs, or PSFs dominated by op-
tical aberrations, as in the corners of wide-field instruments.
To circumvent this limitation, analytical models can be supple-
mented with pixel lookup tables, that is, PSF image components
tabulated at low resolution (e.g., Stetson 1987). These combi-
nations have the big disadvantage that they cannot reproduced
peripheral features commonly aliased like diffraction rings or
spikes. Moreover, even when the central peak of the undersam-
pled PSF has a smooth and even profile, the intra-pixel response
function may be much bumpier than the assumed door func-
tion (e.g. Lauer 1999b, Toyozumi 2006, Barron et al. 2007) and
charge diffusion is often the leading factor (e.g. Krist 2004).

As an alternative, PSFs may also be modelled as linear com-
binations of the appropriate basis functions. The optical point
spread function of an instrument being the Fourier Transform
of the auto-correlation of its pupil, the PSF of any instrument
with a finite aperture is bandwidth-limited. According to the
Shannon sampling theorem it can therefore be perfectly recon-
structed (interpolated) from an infinite table of regularly-spaced
samples. For a finite table the reconstruction will not be perfect:
extended features, such as profile wings and diffraction spikes
caused by the high frequency component of the pupil function,
will obviously be cropped. With this limitation in mind, one
may nevertheless reconstruct with good accuracy a tabulated
PSF thanks to sinc interpolation (e.g. Lupton & Gunn 1986).
Undersampled PSFs can also be represented in the form of tabu-
lated data provided that a finer grid satisfying Nyquist’s criterion
is used (Anderson & King 2000, Mighell 2005).

For reasons of flexibility and interoperability with other soft-
ware, we chose to represent PSFs in PSFE as small images with
adjustable resolution. These PSF “images” can be either derived
directly, treating each pixel as a free parameter (“pixel” vector
basis), or more generally as a combination of basis vector im-
ages.

2.1. Pixel basis

2.1.1. Recovering aliased PSFs

If the data are undersampled, unaliased Fourier componentscan
in principle be recovered from the images of several point-
sources randomly located with respect to the pixel grid, using the
principle of super-resolution (Huang & Tsai 1984). LetΦ(u, v)
be the Fourier transform of the PSF, (∆xs,∆ys) the fractional part
of the vector shift of point-sourceswith respect to the pixel grid,
andAs its total flux. Assuming that the signal total bandwidth is
comprised between 1 and 2 per pixel, the Fourier transform of
the aliased image of point-sources, Fs(u, v), obeys the relation

Fs(u, v) = As.e
uxs+vys (Φ(u, v)

+e−2iπ∆xsΦ(u− 1, v)

+e−2iπ∆ysΦ(u, v− 1)

+e−2iπ(∆xs+∆ys)Φ(u− 1, v− 1)). (1)

In that case a minimum of 4 point-sources is necessary to
recover the unaliased Fourier componentsΦ(u, v). More severe
undersampling would require more sources, but this is unlikely
to happen as FWHMs much below 1 pixel are unusual for in-
strumental PSFs: for most imagers, the MTF of the intra-pixel
response (especially charge diffusion) strongly dampens Fourier
components with spatial wavelengths below the pixel size.

Working in the Fourier domain using the method above,
Lauer (1999a) shows how PSFs from the Hubble Space
Telescope Planetary Camera and Wide-Field Planetary Camera
can be reconstructed at 3 times the original instrumental sam-
pling from a large number of undersampled star images.
However solving (1) in the Fourier domain gives far from satis-
factory results with real data. Images have boundaries; thewings
of point-source profiles may be contaminated with artifactsor
background sources; the noise process is far from stationary be-
hind point-sources with high S/N, because of the local photon-
noise contribution from the sources themselves. All these fea-
tures generate spurious Fourier modes in the solution, which ap-
pear as parasitic ripples in the final, super-resolved PSF.

A more robust solution is to work directly in pixel space, us-
ing an interpolation function; we may use the same interpolation
function later on tofit the tabulated PSF model for point-source
photometry. Letφ be the vector representing the tabulated PSF,
hs(x) an interpolation function, andη the original image sam-
pling step to PSF sampling step ratio (oversampling factor). The
interpolated value at image pixeli of φ centered on coordinates
xs writes

φ′i (xs) =
∑

j

hs

(

x j − η.(xi − xs)
)

φ j (2)

Note thatη can be less than 1 in the case where the image is
generously sampled. Using multiple point sourcess sharing the
same PSF, but centred on various coordinatesxs, and neglecting
the correlation of noise between pixels, we can derive the com-
ponents ofφ that provide the best fit (in the least-square sense)
to the point-source images by minimising the cost function:

E(φ) = χ2(φ) =
∑

s

∑

i∈Ds

(

pi − fsφ
′
i (xs)

)2

σ2
i

, (3)

where fs is the integrated flux of point-sources, pi the number
of counts (ADUs) recorded above the background at image pixel
i, andDs the set of pixels arounds. In the variance estimate of
pixel i, σ2

i , we identify three contributions:

σ2
i = σ

2
b +

pi

g
+ (α.pi)2. (4)

σ2
b is the pixel variance of the local background.pi/g, whereg is

the detector gain ine−/ADU, is the variance contributed by pho-
tons from the source itself. The third term in (4) will generally
be negligible except for highpi values; theα factor accounts for
pixel-to-pixel uncertainties in the flat-fielding, variation of the
intra-pixel response function, and apparent fluctuations of the
PSF due to interleaved “micro-dithered” observations1 or lossy
image resampling. Depending on image quality, suitable values
for α will range from less than one thousandth to a few percents.

fs is measured by integrating the flux in a defined aperture.
This aperture will define the normalisation of the PSF. Its di-
ameter must be sufficient to prevent the measurement to be too
sensitive to centering or pixellation effects, but not excessively
large to avoid too strong S/N degradation and contamination by
neighbours. In practice, a≈ 5′′ diameter provides a fair compro-
mise with good seeing images (PSF FWHM< 1.2′′),

1 Micro-dithering consists of observingn2 times the same field with
repeated 1/n pixel shifts in each direction to provide properly sampled
images despite using large pixels. Although the observed frames can
in principle be recombined with an “interleaving” reconstruction pro-
cedure, changes in image quality from exposure to exposure may often
lead to jaggies along gradients of source profiles, as can sometimes be
noticed in DeNIS or WFCAM images.
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Fig. 1. The Lanczos3 interpolant in one dimension (left), and its modu-
lation transfer function (right).

2.1.2. Interpolating the PSF model

As we saw, one of the main interests of interpolating the PSF
model in direct space is that it involves only a limited num-
ber of PSF “pixels”. However, as in any image resampling task,
a compromise must be found between the perfect Shannon in-
terpolant (unbounded sinc function), and simple schemes with
excessive smoothing and/or aliasing properties like bi-linear in-
terpolation (“tent” function) (see Wolberg 1992). Experimenting
with the SW image resampling prototype (Bertin et al. 2002),
we found in the Lánczos3 interpolant (Fig. 1) a reasonable com-
promise: the kernel footprint is 6 PSF pixels in each dimension,
and the modulation transfer function is close to flat up to≈ 60%
of the Nyquist frequency.

A typical minimum of 2 to 2.5 pixels per PSF Full-Width
at Half-Maximum (FWHM) is required to sample an astronom-
ical image without generating significant aliasing (see Bernstein
2002). Consequently, we adopt a default sampling step for the
PSF model corresponding to 4 model “pixels” per PSF FWHM.

2.1.3. Regularisation

For η ≫ 1, the system of equations obtained from minimising
(3) becomes ill-conditioned and requires regularisation (Pinheiro
da Silva 2006). Our experience with PSFE shows that the solu-
tions obtained over the domain of interest for astronomicalimag-
ing (η <∼ 3) are robust in practice, and that regularisation is gen-
erally not needed. However, it may happen, especially with in-
frared detectors, that samples of undersampled point-sources are
contamined by image artifacts; and solutions computed with(3)
become unstable. We therefore added a simple Tikhonov regu-
larisation scheme to the cost function:

E(φ) = χ2(φ) + ‖Tφ‖2. (5)

In image processing problems the (linear) Tikhonov operator T
is usually chosen to be a high-pass filter to favour “smooth” so-
lutions. PSFE adopts a slightly different approach by reducing
T to a scalar weight 1/σ2

φ and performing a procedure in two
steps.

1. PSFE makes a first rough estimate of the PSF by simply
shifting point-sources to a common grid and computing
a median imageφ(0). With undersampled data this image
represents a smooth version of the real PSF.

2. Instead of fitting directly the model to pixel values, PSFE
fits the difference∆φ between the model andφ(0). E(φ) be-
comes

E(φ) =
∑

s

∑

i∈Ds

(

pi − fs

(

(φ′(0)
i (xs) + ∆φ′i (xs)

))2

σ2
i

+
∑

j

∆φ2
j

σ2
φ

. (6)

Minimising (6) with respect to the∆φ j ’s comes down to
solving the system of equations

0 =
∂E
∂∆φk

= 2 fs

∑

s

∑

i∈Ds

1

σ2
i

hs (xk − η.(xi − xs))

×

















fs

∑

j

hs

(

x j − η.(xi − xs)
)

(φ(0)
j + ∆φ j) − pi

















+
2

σ2
φ

∆φk. (7)

In practice the solution appears to be fairly insensitive tothe
exact value ofσφ except with low signal-to-noise conditions or
contamination by artifacts.σφ ≈ 10−2 seems to provide a good
compromise by bringing efficient control of noisy cases but no
detectable smoothing of PSFs with good data and high signal-
to-noise.

The system in (7) is solved by PSFE in a single pass. Much
of the processing time is actually spent in filling the normal
equation matrix, which would be prohibitive for large PSFs if
the sparsity of the design matrix were not put to contribution to
speed up computations.

2.2. Shapelet basis

Two-dimensional Gauss-Hermite functions provide anothercon-
venient orthonormal basis for representing local image features.
The basis vectors are

ψn1,n2(x) =
1

σ
√

2n1+n2n1!n2!
Hn1

( x1

σ

)

Hn2

( x2

σ

)

e−|x|
2/2σ2

, (8)

whereHn(x) is a Hermite polynomial of ordern, andσ a scal-
ing factor. Gauss-Hermite functions were originally introduced
in the image processing community to provide a mathematical
model of the receptive fields in the early stage of mammalian
spatial vision (Martens 1990), and later used for such diverse
applications as feature extraction, image compression andindex-
ing, or artifact removal (see e.g. Martens 2006 for a review).

In the field of astronomical imaging, where they were popu-
larised under the name ofshapelets, they have proven to be quite
effective at describing PSF variations for differential photome-
try and PSF ellipticities for weak lensing applications (Alard &
Lupton 1998, Bernstein & Jarvis 2002, Refregier 2003).

The polar version of shapelets (Massey & Refregier 2005)
provides a more “natural” orthonormal basis for broadly circular
profiles

ψn,m(r, θ) =
(−1)

n−|m|
2

σ

√

√

n−|m|
2 !

π n+|m|
2 !

L(|m|)
n−|m|

2

(

r2

σ2

)

×
( r
σ

)|m|
e−

1
2( r

σ )2−imθ,(9)

where (n − |m|)/2 ∈ N and L(α)
n (x) is the associated Laguerre

polynomial

L(α)
n (x) =

1
n!

x−αex dn

dxn

(

xn+αe−x) (10)

=

n
∑

k=0

(α + n)!
k!(n− k)!(α + k)!

(−x)k. (11)
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c d ba

Fig. 2.Example of an extreme case of PSF recovery.Top: part of a sim-
ulated star field image with strong undersampling.Bottom, from left to
right: (a) simulated optical PSF, (b) simulated PSF convolved by the
pixel response, (c) PSF recovered by PSFE at 4.5 times the image res-
olution from a random sample of 212 stars extracted in the simulated
field above, using the “pixel” vector basis (§2.1), and (d) PSF recovered
using the “shapelet” basis (§2.2) withnmax = 16.

The number of shapelet vectors withn ≤ nmax is

Nmax = (nmax+ 1)(nmax+ 2)/2. (12)

Shapelet decompositions with finiten ≤ nmax are only able
to probe a restricted range of scales. Refregier (2003) quotes
rmin = σ/

√
nmax+ 1 andrmax = σ

√
nmax+ 1 as the standard

deviation of the central lobe and the whole shapelet profile,re-
spectively. In practice, the diameter of the circle enclosing the
region where images can be fitted with shapelets is only about
≈ 2.5rmax. Hence modelling accurately both the wings and the
core of PSFs with a unique set of shapelets requires a very large
number of shapelet vectors, typically several hundreds.

3. Managing PSF variations

3.1. Basic formalism

Few imaging systems have a perfectly stable PSF, be it in time
or position; for most instruments the approximation of a con-
stant PSF is valid only on a small portion of an image at a
time. Position-dependent variations of the PSF on the focalplane
are generally caused by optics, and exhibit a smooth behaviour
which can be modelled with a low-order polynomial.

The most intuitive way to generate variations of the PSF
model is to apply some warping to it (enlargement, elongation,
skewness, ...). But this description is not appropriate with PSFE

because of the non-linear dependency of PSF vector components
towards warping parameters. Instead, we can extend the formal-
ism of (6) by describing the PSF as a variable, linear combina-
tion of PSF vectorsφc; each of them associated to a basis func-
tion Xc of some parameter vectora like image coordinates:

E(φ) =
∑

s

∑

i∈Ds

(

pi − fs
∑

c Xc(a)
(

(φ′(0)
c i (xs) + ∆φ′c i(xs)

))2

σ2
i

+
∑

j

∑

c

∆φ2
c j

σ2
φ

. (13)

The basis functionsXc in the current version of PSFE are
limited to simple polynomials of the components ofa. Each
of these componentsal belongs to a “distortion group”g =
0, 1, ...,Ng, such that

Xc(a) =
∏

g<Ng





















∏

(
∑

l∈Λg dl)≤Dg

adl

l





















, (14)

whereΛg is the set of parameter indicesl that concern the dis-
tortion groupg, andDg ∈ N is the polynomial degree of group
g. The product runs over all compatible combinations ofdl ∈ N
andg. The polynomial engine of PSFE is the same as the one
implemented in the SCAMP software (Bertin 2005) and can use
any set of SE and/or FITS header parameters as com-
ponents ofa. Although PSF variations are more likely to de-
pend essentially on source position on the focal plane, it isthus
possible to include explicit dependency on parameters suchas
telescope position, time, or source flux (Fig. 4). In practice, a
third-degree polynomial on pixel coordinates (represented by 20
PSF vectors) is able to map PSF variations with good accuracy
on most images (Fig. 3).

3.2.

Accurate modelling of the PSF with the scheme described above
involves a fairly large number of degrees of freedom, and is
therefore somewhat sensitive to noise in the point-source sam-
ple. This is especially notable in exposures with a small number
of point sources, and/or where the PSF exhibits strong variations
over the field of view. Hopefully, one can drastically reducethe
number of degrees of freedom necessary to provide a good de-
scription of the PSF and its variations by using a vector basis
better suited to a specific instrument than the ”generic” pixel and
shapelet bases described in§2.1 and§2.2.

It is easy to show (e.g. Theodoridis & Koutroumbas 2003)
that Principal Component Analysis (PCA) provides the basis
which requires the lowest number of vectors to approximate a
set of data (images) within a given Mean Square Error, assum-
ing the noise is additive and uncorrelated between images. PCA
has already been proposed and used by several authors (Lupton
et al. 2001, Jee et al. 2007) to represent the PSF and its varia-
tions. In these studies, the PCA is directly applied to a selection
of point-source images which have been re-centred by resam-
pling. There are however some major drawbacks with this ap-
proach. (1) It requires well-sampled images. (2) Because ofthe
vast range of fluxes found among field stars, linear combinations
derived from the PCA are sub-optimum in terms of signal-to-
noise (unless a weighted PCA scheme is used). (3) PCA relies on
2nd order statistics and is therefore particularly sensitive to con-
tamination from outliers. With the “direct” approach above, the
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Fig. 3. Example of PSF mapping as a function of pixel coordinates in
PSFE. Top: PSF component vectors for each polynomial term de-
rived from the CFHTLS-deep “D4” r-band stack observed with the
MEGACAM camera. A third-degree polynomial was chosen for this
example. Note the prominent variation of PSF width with the square
of the distance to the field centre.Bottom: reconstruction of the PSF
over the field of view (the grey scale has been slightly compressed to
improve clarity).

Fig. 4. Example of PSF mapping on images from a non-linear imag-
ing device. 1670 point-sources from the central 4096× 4096 pixels of
a photographic density scan (SERC J #418 survey plate, courtesy of
J. Guibert, CAI, Paris observatory) were extracted using SE,
and their images run through PSFE. A sample is shown at thetop-left.
The PSF model was given a 6th degree polynomial dependency on the
instrumental magnitude measured by SE (MAG AUTO). Middle:
PSF components derived by PSFE. Bottom: reconstructed PSF images
as a function of decreasing magnitude.Top-right: sample residuals after
subtraction of the PSF-model.

relative contribution from the various detections to the Principal
Components is not tight to any parameter on which the PSF is
supposed to depend, like image coordinates (i.e. some artifact in
the centre of a frame contributes as much as an isolated, “gen-
uinely distorted” point-source in the corner): outliers are difficult
to filter out.

For all these reasons, the application of PCA in PSFE is
not done directly on the data, but on model images from several
exposures, reconstructed from theφc’s derived in (13).

4. Selecting point-sources

Extracting the PSF from an astronomical image is much easier
than from an “everyday life” picture (see, e.g. Luxen & Förstner
2002, Hall & Qiu 2007 and references therein), thanks to the
presence of unresolved sources (stars or quasars) over the field
of view. Nevertheless, in some astronomical observations,the
fraction of suitable point sources that may be used as good ap-
proximations to the local PSF may be rather low. This is espe-
cially true for deep imaging in the vicinity of galaxy clusters
at high galactic latitudes, where unsaturated stars may comprise
only a small percentage of all detectable sources. In our wish to
minimise as much as possible assumptions about the shape of
the PSF, we are left with the following selection criteria:

– the shape of suitable unresolved (unsaturated) sources does
not depend on the flux.

– amongst the image profiles of all real sources, those from
unresolved sources have the smallest FWHM.

These considerations and experimentation led us to adopt asa
starting point to selection a procedure similar to the rectangu-
lar cut in the half-light-radius (rh) vs magnitude plane popular
amongst member of the weak lensing community (Kaiser et al.
1995).rh is well estimated by SE’s FLUX RADIUS pa-
rameter. In PSFE the “vertical” locus produced by point sources
(whose shape does not depend on magnitude) is automatically
framed between a minimum signal-to-noise threshold and the
saturation limit on the magnitude axis, and within some margin
around the local mode on therh axis (Fig. 5). Additionally, to
provide a better rejection of image artifacts and multiple objects,
PSFE excludes detections flagged by SE as blended
or cropped and those with aspect ratios higher than some prede-
fined limit (typically 2:1).

Despite the filtering process, a small fraction of the remain-
ing point-sources candidates (typically 5-10% on ground-based
optical images at high galactic latitude) is still unsuitable to
serve as a realisation of the local PSF, because of contamination
by neighbour objects. Iterative procedures to subtract thecon-
tribution from neighbour stars have been successfully applied
in crowded fields (Stetson 1987, Magain et al. 2007). However
these techniques do not solve the problem of pollution by non-
stellar objects like image artefacts, a common curse of widefield
imaging, and contaminated point-sources still have to be filtered
out. The rejection process at play in PSFE works by deriving
a first PSF model estimate, and computing a map of residuals
from the fit by this model for each point-source (Fig. 6): each
pixel of the map is the square of the difference square of the
model with the data, divided by theσ2

i estimate from (4). The
PSF model may still be “rough” at this stage, hence to avoid pe-
nalising poorly fitted bright source pixels, the factorα is initially
set to a fairly large value, 0.1-0.3. Assuming that the fitting errors
are normally distributed, and given the large number of degrees
of freedom (the tabulated values of the model), the distribution
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Fig. 5.Half-light-radius (rh, estimated by SE’s FLUX RADIUS)
vs magnitude (MAG AUTO) for a 520s CFHTLS exposure at high galac-
tic latitude taken with the Megaprime instrument in the i band. The
rectangle enclosing part of the stellar locus represents the approximate
boundaries set automatically by PSFE to select point-sources.

of
√

χ2 derived from the residual maps of point-sources is ex-
pected to be Gaussian to a good approximation. Contaminated
profiles are identified using iterativeκ − σ clipping to the dis-
tribution of

√

χ2. Throughout our experiments, the valueκ = 4
provided a consistent compromise between being too restrictive
and being too permissive.

5. Quality assessment

Maintaining a certain level of image quality, and especially PSF
quality, by identifying and rejecting “bad” exposures, is acrit-
ical issue in large imaging surveys. Image control must be au-
tomatized, not only because of the sheer quantity of data in
modern digital surveys, but also to ensure an adequate levelof
consistency. Automatized PSF quality assessment is tradition-
ally done based on point-source FWHM and ellipticity measure-
ments. Although this is certainly efficient for finding fuzzy or
elongated images, it cannot make the distinction between e.g. a
defocused image and a moderately bad seeing.

In addition to the possibility to trace out the apparition of
specific patterns using customized basis functions, PSFE im-
plements a series of generic quality measurements done on the
PSF model as it varies across the field of view. The main set of
measurements is done in PSF pixel space (oversampling factor
η) by comparing the actual PSF model vectorφ with a reference
PSF modelρ(x′). We adopt as a reference model the elliptical
Moffat (1969) function that fits best (in the chi-square sense) the
model:

ρ(x′) = I0

(

1+
∣

∣

∣

∣

∣

∣A(x′ − x′c)
∣

∣

∣

∣

∣

∣

2
)−β

, (15)

with

A =
4
η

(2−
1
β − 1)

(

cosθ/Wmax sinθ/Wmax
− sinθ/Wmin cosθ/Wmin

)

, (16)

Fig. 6.Left: some source images selected for deriving a PSF model of a
MEGACAM image (the basic rejection tests based on SExtractor flags
and measurements were voluntarily bypassed to increase thefraction
of contaminants in this illustration).Right: map of residuals computed
as explained in the text; bright pixels betray interlopers like cosmic ray
hits and close neighbour sources.

whereI0 is the central intensity of the PSF,x′c the central coor-
dinates (in PSF pixels),Wmax, the PSF FWHM along the major
axis,Wmin the FWHM along the minor axis, andθ the position
angle (6 free parameters). As a matter of fact, the Moffat func-
tion provides a good fit to seeing-limited point-source images,
and to a lesser degree, to the core of diffraction-limited images
for instrument with circular apertures (Trujillo et al. 2001): in
most imaging surveys, the “right” instrumental PSF will be very
similar to a Moffat function with low ellipticity. Since PSFE is
meant to deal with significantly undersampled PSFs, anotherfit
which we call “pixel-free” is also performed, where the Moffat
model is convolved with a square top-hat function the width of
a physical pixel, as an approximation to the real intra-pixel re-
sponse function. The (non-linear) fits are performed using the
LevMar implementation of the Levenberg-Marquardt algorithm
(Lourakis 2004). They are repeated at regular intervals on agrid
of PSF parameter vectorsa, generally composed of the image
coordinatesx.

The average FWHM (Wmax + Wmin)/2, ellipticity (Wmax −
Wmin)/(Wmax+Wmin) andβ parameters derived from the fits pro-
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vide a first set of local IQ estimators (Fig. 7). The second setis
composed of the so-calledresidualsindex

r = 2

∑

i

(

φi + ρ
′(x′i )

) ∣

∣

∣φi − ρ′(x′i )
∣

∣

∣

∑

i

(

φi + ρ′(x′i )
)2

(17)

and theasymmetryindex

α = 2
∑

i (φi + φN−i) |φi − φN−i |
∑

i (φi + φN−i)2
, (18)

where theφN−i ’s are the point-symmetric counterparts to theφi

components.

6. Use cases

6.1. Shear measurements

The quality of weak shear measurements critically depends on
the mapping accuracy of PSF anisotropy. Earlier galaxy ellip-
ticity recovery techniques would rely on the PSF’s 2nd-order
weighted moments only (Kaiser et al. 1995). More recent ap-
proaches require the full two-dimensional PSF model (Bernstein
& Jarvis 2002, Refregier & Bacon 2003, Miller et al. 2007).

The absence of clearly visible residuals in PSF-subtracted,
bright star images is a testimony to the global accuracy of mod-
els derived with PSFE. But the modelling process features no
constraint explicitely related to PSF ellipticity. We mustthere-
fore assess whether the derived models are usable for shear anal-
yses at the bias level required by today’s experiments (typically
below the 0.1% level).

To this aim, we simulated 100 sets of realistic imaging data,
each with a different (constant) PSF and random (constant) shear
applied to 27 square degrees of (virtual) sky. The simulations
include photon noise as well as source crowding and were gen-
erated using the S2 and SM3 software tools (Bertin
2009). Galaxies are simulated as a sum of a bulge component
with de Vaucouleurs profile and an exponential disk. PSFs were
extracted from a small sub-image with random size for every
set, in order to check the influence of the number of stars used
to model the PSF. Table 1 contains the main parameters used in
the simulations, and the recovered PSFs are shown Fig. 8.

Fig. 8.PSFs simulated for shear testing and modelled using PSFE.

Finally, average shear values were derived for each simula-
tion set using the following typical, fully automated procedure:

1. Extract image sources in sub-images together with object
pixel info with SE;

2. Run PSFE with default settings on the previously extracted
catalogue to derive a (constant) PSF model;

3. Extract sources from the full simulations and fit 2-
dimensional, PSF-convolved Sérsic models;

2 Publicly available athttp://astromatic.net/software/stuff
3 Publicly available athttp://astromatic.net/software/skymaker

Table 1.Simulation parameters

Cosmology Ωm = 0.3,ΩΛ = 0.7
Galaxy luminosity functions Madgwick et al. (2003)
Galaxy luminosity+density evolution Gabash et al. (2004)
Bulge sizes Bingelli et al. (1984)
Disk sizes de Jong & Lacey (2000)
Bulge apparent ellipticities Sandage et al. (1970)
Disk apparent ellipticities cosθ with −85◦ < θ < +85◦

Shearγ1/2 -0.05 –+0.05
Star and galaxy positions Poissonian distribution
Star magnitude range 17 – 26
Star counts (expected) 0.12 dexp(0.2iAB ) mag−1.deg−2

Photometric band i (Megaprime)
Phot. zero-point (“ADUs, per sec.”) iAB = 25.72 mag
Sky background µiAB = 20.4 mag.arcsec−2

Exposure time 12× 300s
Pupil geom. /©3.6m primary, /©1m obscuration, ’+’-shaped spider
Seeing (FWHM) 0.1 – 0.8′′

Defocalisation (d80
a) 0.0 – 0.5′′

Astigmatism (d80
a) 0.0 – 0.6′′

Coma (d80
a) 0.0 – 0.6′′

Pixel scale 0.186′′

Conversion factor 1.6 e−/ADU
Readout noise 5 e−

a diameter of the disk that contains 80% of the energy (ESO con-
vention)

4. Average ellipticity components derived from the best-fitting
Sérsic parameters of all unsaturated, uncropped galaxies
with signal-to-noise ratio≥ 20 (no weighting applied).

Step 3 is performed using a prototype version of SE,
that fits (in theχ2 sense) Sérsic models convolved with the lo-
cal PSF model. We measure a standard deviation of individual
galaxy ellipticitesσ1 = 0.205. Since no weighting is applied to
measurements, the standard error on ellipticities averaged for a
set ofN galaxies is thereforeσN = 0.205/

√
N.

Concerns have recently been raised about the dangers of
measuring shear parameters by fitting single Sérsic modelsto
more complex galaxy profiles (Voigt & Bridle 2010). A small
effect is indeed seen in our measurements, in the sense that shear
amplitudes are over-estimated by about 1.5% (Fig. 9). This cor-
responds to a maximum difference of±7.10−4 in the measured
shear with respect to the true value in our simulations. We cor-
rected for this effect by dividing the ellipticity measurements by
the slope in Fig. 9.

Figure 10 shows the shear residuals (measured shear with
truth values subtracted) obtained for the 100 sets, as a function
of various PSF characteristics. We observe that

– no significant trend is found with PSF ellipticity, despite the
wide range of PSF shapes and aspect ratios (up to 2.3:1 !),

– no trend is found with PSF FWHM either, even for signifi-
cantly undersampled images (FWHM< 2 pixels),

– constant PSFs do not seem to require a large number of stars
as far as ellipticity measurements are concerned (some of the
models here were derived with only 3 stars),

– there are hints of a small ellipticity bias (≈ 1.10−3) for
the most asymmetrical PSFs of the simulation (α > 0.2).
Hopefully, images with such extreme asymmetries are gen-
erally discarded from imaging surveys.

To this aim, we extracted the PSFs from the three sets of
realisations generated by the week lensing community for the
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Field 784762p: FWHM map
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Fig. 7. Colour-coded maps of the PSF FWHM (left) and ellipticity (right) generated by PSFE from a CFHTLS-Wide exposure The map and
the individual Megaprime CCD footprints on the sky are presented in gnomonic projection (north is on top, east on the left). PSF variations are
modelled independently on each CCD using a 3rd degree polynomial (see text).

Fig. 9.Recovered averaged ellipticities
〈

e1,2
〉

as a function of shear truth valuesγ1,2.

Great’08 challenge (Bridle et al. 2009). As we are only interested
in estimating the amount of biases in the modeling of the PSF,
not in the measurement of

7. In practice

Building the normal equation matrix and solving the system (7)
is fast: about 5 seconds for a 1000 pixel PSF and 100 stars on a
2GHz processor core.

8. Conclusion
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Artigau E., Robin A., Allard F., Doyon R., Hill G., A&A, submitted
Diolaiti E., Bendinelli O., Bonaccini D., Close L., Currie D., Parmeggiani G.,

2000, A&A, 147, 335
Franz O.G., 1973, JRASC, 67, 81
Gabasch A. Bender R., Seitz S., Hopp U., Saglia R. P. Feulner G., Snigula J.,

Drory N., Appenzeller I., Heidt J., Mehlert D. Noll S., BöhmA., Jäger K.,
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