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ABSTRACT

Context. Deriving the Point Spread Function (PSF) of an astronomiioalge is a required step in tasks such as crowded field
photometry, stdgalaxy separation, galaxy morphology, as well as imageitgu@introl.

Aims. We present the techniques implemented in P§BEcompanion program to the Stracrtor (Bertin & Arnouts 1996) source
extraction package, to extract, model and characterise $feof astronomical images in a robust and fully automated wa

Methods. We show how PSFEcan recover variable PSFs of arbitrary shapes from undg@isdndata, using decompositions on an
appropriate set of basis vectors.

Results. Results on images coming from simulations as well as moseaiecas such as MEGACAM and WIRCam are presented.
Conclusions. PSFK is released to the community under the CeCILL Public Licence
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1. Introduction Kendall et al. 2005, Lodieu et al. 2006, Delorme et al. 2008),

. , ) , .as well as galaxy morphology (Bertin et al., in preparation)
The flux response of modern imaging devices is close to lin- This article describes all the steps followed by PSF&

ear over a large dynamic range and translation-invariar tGnodelling and characterising the PSF. First,$hand§3 we
good approximation within the observed field of view. Hencgroguce our approach to modelling the PSF profile and itis va
for such devices a Point Spread Function (PSF) can be d@pns. Ing4 we present our recipe for identifying point-sources
rived that defines much of their instrumental performane® (bgitaple as realisations of the local Point Spread Funchio$b
sides noise properties). In Astronomy, knowing the PSF ¥6 ke propose some metrics for measuring image quality based on

to many scientific analysis tasks such as detection (matithedihe pSF. Finally we comment our results and point out passibl
tering over stationary background noise), galaxy separation, improvements ir§8.

galaxy morphology, weak shear analysis dfetiential photom-

etry. In large sky surveys, which can comprise millions gi@x

sures, the PSF and its variations can be used in qualityaon®. Modelling
procedures to detectteeiently instrumental problems such as

defocused or abnormally aberrated exposures, exceediagly FOF astronomers, the most important parameter charaogris
atmospheric conditions and guiding errors. the PSF is the Full-Width-at-Half-Maximum (FWHM) of the

: ..__main PSF lobe, expressed in arc seconds. The smaller the
The PSFEk (for PSF EXtraction) software tool was written ' : , . i
as a companio(n program to the ;S)EAcTOR source extraction —WWHM, the sharper the images. Without adaptive optics, on
package (Bertin & Arnouts 1996), with the purpose of prowvidi grOlﬁnl\j-b:lSci()imt_ﬁlaetse%O%es tr\:\gthco?ﬁreguﬁ)i %‘?oﬂw‘q’a;[rmeospﬁgr'c
a universal PSF modelling and measurement tool. The RSﬁt:éNulen::e thelso-calleé/bein In slughl conditions forFI)on :
prototype has been developed over many years and has alreegxgﬁosures’ 1s) the an ula?.ModuIation Transfe,r Functign
been used in several stellar studies relying on PSF-fitthngy p % ) 9

= TF) is well represented by exp{/wc) > as expected from
tometry (e.g. Kalirai et al. 2001a,2001b, Moraux et al. zoogleolmogorov turbulence model, with, ~ 2.921/FWHM (e.g.

- ] Roddier 1981, Racine 1996). There is no simple analytical ex
Send gprint requests toE. Bertin pression in real space corresponding to this MTF, howewer th

* Based on observations obtained with MegaP/viegaCam, a joint core s close to Gaussian, and the profile is well fitted by &Mo
project of CFHT and CEMAPNIA, at the Canada-France-Hawaii (1969) function (Truijillo et al. 2001).

Telescope (CFHT) which is operated by the National Resgaazhncil : : :
(NRC) of Canada, the Institut National des Science de I'grswof the Analyuoa_l functions such as Mf}_ats, Lorentzians or
Centre National de la Recherche Scientifique (CNRS) of Rraand Gaussian mixtures havg been used with success to model the
the University of Hawaii. This work is based in part on datacucts PSF of ground-based instruments (Franz 1973, Penny 1979,
produced at the Canadian Astronomy Data Centre as part Gkthada- Buonanno et al. 1983, Gilliland & Brown 1987, Schechter et
France-Hawaii Telescope Legacy Survey, a collaboratisept of al. 1993). They can also provide a satisfactory match to mnde
NRC and CNRS. sampled data (FWHMs 2.5 pixels) after the functions have
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been convolved with the intra-pixel response function t&ste Working in the Fourier domain using the method above,
1987, Buonanno & lannicola 1989, Penny & Leese 199@)auer (1999a) shows how PSFs from the Hubble Space
Unfortunately the analytical functions above are poor appr Telescope Planetary Camera and Wide-Field Planetary Gamer
mations of difraction-limited PSFs, or PSFs dominated by opgan be reconstructed at 3 times the original instrumental sa
tical aberrations, as in the corners of wide-field instruteenpling from a large number of undersampled star images.
To circumvent this limitation, analytical models can belep However solving (1) in the Fourier domain gives far from sati
mented with pixel lookup tables, that is, PSF image comptmerfactory results with real data. Images have boundariesyihgs
tabulated at low resolution (e.g., Stetson 1987). Thesebéomof point-source profiles may be contaminated with artifamts
nations have the big disadvantage that they cannot repeddubackground sources; the noise process is far from statidrear
peripheral features commonly aliased likdfidiction rings or hind point-sources with high/S, because of the local photon-
spikes. Moreover, even when the central peak of the undersamise contribution from the sources themselves. All these f
pled PSF has a smooth and even profile, the intra-pixel regpotures generate spurious Fourier modes in the solution,iwdpe
function may be much bumpier than the assumed door furpear as parasitic ripples in the final, super-resolved PSF.
tion (e.g. Lauer 1999b, Toyozumi 2006, Barron et al. 200d) an A more robust solution is to work directly in pixel space, us-
charge dfifusion is often the leading factor (e.g. Krist 2004). ing an interpolation function; we may use the same intetjla

As an alternative, PSFs may also be modelled as linear cdiuaction later on tdit the tabulated PSF model for point-source
binations of the appropriate basis functions. The opticaihipp photometry. Leip be the vector representing the tabulated PSF,
spread function of an instrument being the Fourier Tramsforhg(x) an interpolation function, ang the original image sam-
of the auto-correlation of its pupil, the PSF of any instrmmne pling step to PSF sampling step ratio (oversampling facidrg
with a finite aperture is bandwidth-limited. According toeth interpolated value at image pixebf ¢ centered on coordinates
Shannon sampling theorem it can therefore be perfectlynrecos writes
structed (interpolated) from an infinite table of regulaspaced
samples. For a finite table the reconstruction will not bégmtr  #i(Xs) = Z hs (%) = 7.0x = X)) ¢ @)
extended features, such as profile wings arftfatition spikes !
caused by the high frequency component of the pupil functioNote thaty can be less than 1 in the case where the image is
will obviously be cropped. With this limitation in mind, onegenerously sampled. Using multiple point soursetaring the
may nevertheless reconstruct with good accuracy a talulagame PSF, but centred on various coordinateand neglecting
PSF thanks to sinc interpolation (e.g. Lupton & Gunn 1986he correlation of noise between pixels, we can derive tme-co
Undersampled PSFs can also be represented in the form ef tglmnents of that provide the best fit (in the least-square sense)
lated data provided that a finer grid satisfying Nyquistigecion to the point-source images by minimising the cost function:
is used (Anderson & King 2000, Mighell 2005).

2
For reasons of flexibility and interoperability with otheifts (pi - fs¢i'(Xs))

ware, we chose to represent PSFs in PS&&Esmall images with E($) = x*(9) = Z Z 2 ®3)

adjustable resolution. These PSF “images” can be eithareder S ieDs '

directly, treating each pixel as a free parameter (“pix@ttor wheref; is the integrated flux of point-souree p; the number

basis), or more generally as a combination of basis vecter igf counts (ADUS) recorded above the background at imagé pixe

ages. i, andDs the set of pixels around In the variance estimate of
pixeli, (riz, we identify three contributions:

Jj

2.1. Pixel basis 224 P, (@.pi)>. @)
2.1.1. Recovering aliased PSFs 9

) ) (rg is the pixel variance of the local backgroum.g, whereg is
Ifthe data are undersampled, unaliased Fourier componants ihe detector gain ie~/ADU, is the variance contributed by pho-
in principle be recovered from the images of several poinsns from the source itself. The third term in (4) will gerlra
sources randomly located with respect to the pixel grigitie e hegligible except for high; values; ther factor accounts for
principle of super-resolution (Huang & Tsai 1984). I, V) pixel-to-pixel uncertainties in the flat-fielding, variati of the
be the Fourier transform of the PSBx, Ays) the fractional part jnra-pixel response function, and apparent fluctuatiohthe
of the vector shift of point-sourcewith respect to the pixel grid, psg que to interleaved “micro-dithered” observatiooslossy
andAg .its total flux. Assuming that t_he signal totql bandwidth i?mage resampling. Depending on image quality, suitablees!
comprised between 1 and 2 per pixel, the Fourier transformf , will range from less than one thousandth to a few percents.

the aliased image of point-sourseFs(u, v), obeys the relation fs is measured by integrating the flux in a defined aperture.
This aperture will define the normalisation of the PSF. Its di
— UXs+VYs ¢
Fs(uv) = A€ (q)gi’n\g ameter must be slicient to prevent the measurement to be too
+e 70U -1,v) sensitive to centering or pixellatiorffects, but not excessively
+e 2™ p(u, v — 1) large to avoid too strong/N degradation and contamination by
+e Ay — 1, v — 1)) (1) heighbours. In practice,-a5" diameter provides a fair compro-

mise with good seeing images (PSF FWHM..2"),
In that case a minimum of 4 point-sources is necessary g

recdover thellunallas?éi Founer componeh(s, V)t; '\t/l?l':'e $ever¢k repeated An pixel shifts in each direction to provide properly sampled
undersampling would require more sources, but this is gty .images despite using large pixels. Although the observachds can

to happen as FWHMs much below 1 pixel are unusual for ify; principle be recombined with an “interleaving” reconstion pro-
strumental PSFs.: for most imagers, the MTF of the mtra-lplxgedure, changes in image quality from exposure to exposayeaften
response (especially chargéfdsion) strongly dampens Fourierlead to jaggies along gradients of source profiles, as caetimes be
components with spatial wavelengths below the pixel size.  noticed in DeNIS or WFCAM images.

Micro-dithering consists of observing times the same field with
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= 15 ((0Ox9) + AK(xD)T o AG?
E(¢)=Zz(p ( Xz + M%) > =L (6

a; 0'2

s ieDg [ i ¢

Minimising (6) with respect to thé\¢;’s comes down to
solving the system of equations

Interpolation function

0= &
OAPy
1
‘7‘4“‘7‘2“‘(;“‘;“‘;‘ UH‘O.‘Z‘“0}4”‘0‘,5”‘0?8”‘1 = 2fSZZ_2hS(Xk_n'(X|_XS))
x L, S ieDs o
Fig. 1. The Lanczos3 interpolant in one dimensideft], and its modu- % fsz hs (x,— —n.(xi - Xs)) (¢(0) +Adj) - pi
lation transfer functionr{ght). ; !
2
. +— Ak (7)
2.1.2. Interpolating the PSF model Oy

As we saw, one of the main interests of interpolating the PSF In practice the solution appears to be fairly insensitivéhio
model in direct space is that it involves only a limited numexact value otr, except with low signal-to-noise conditions or
ber of PSF “pixels”. However, as in any image resampling,tasontamination by artifactsr, ~ 102 seems to provide a good
a compromise must be found between the perfect Shannongompromise by bringingfécient control of noisy cases but no
terpolant (unbounded sinc function), and simple schemé#s wiletectable smoothing of PSFs with good data and high signal-
excessive smoothing afod aliasing properties like bi-linear in- to-noise.
terpolation (“tent” function) (see Wolberg 1992). Expeenting The system in (7) is solved by PSk i a single pass. Much
with the SWrp image resampling prototype (Bertin et al. 2002)pf the processing time is actually spent in filling the normal
we found in the Lanczos3 interpolant (Fig. 1) a reasonatie-c equation matrix, which would be prohibitive for large PSFs i
promise: the kernel footprint is 6 PSF pixels in each dimemsi the sparsity of the design matrix were not put to contributm
and the modulation transfer function is close to flat up 0% speed up computations.
of the Nyquist frequency.

A typical minimum of 2 to 2.5 pixels per PSF Full-Width :
at Half-Maximum (FWHM) is required to sample an astrononf-2- Shapelet basis
ical image without generating significant aliasing (seelB&in  Two-dimensional Gauss-Hermite functions provide anatber
2002). Consequently, we adopt a default sampling step ®r tenient orthonormal basis for representing local imagaifes.
PSF model corresponding to 4 model “pixels” per PSF FWHMrhe basis vectors are

_ 1 X1 X2 _IX12/202
2.1.3. Regularisation Yowo(X) = o V2N TR Hi, ( o ) Hi, ( o ) © ’ (®)

Forn > 1, the system of equations obtained from minimisingshereH,(x) is a Hermite polynomial of ordem, ando a scal-
(3) becomesiill-conditioned and requires regularisatiinlfeiro ing factor. Gauss-Hermite functions were originally intuced
da Silva 2006). Our experience with PSFshows that the solu- in the image processing community to provide a mathematical
tions obtained over the domain of interest for astrononiinah- model of the receptive fields in the early stage of mammalian
ing (7 < 3) are robust in practice, and that regularisation is gespatial vision (Martens 1990), and later used for such diver
erally not needed. However, it may happen, especially with iapplications as feature extraction, image compressioiireaiec-
frared detectors, that samples of undersampled pointesuare ing, or artifact removal (see e.g. Martens 2006 for a review)
contamined by image artifacts; and solutions computed (8ith In the field of astronomical imaging, where they were popu-
become unstable. We therefore added a simple Tikhonov retarised under the name shapeletsthey have proven to be quite
larisation scheme to the cost function: effective at describing PSF variations foffdrential photome-

try and PSF ellipticities for weak lensing applicationsd &
E(#) = x*(¢) + ITgl>. (5) Lupton 1998, Bernstein & Jarvis 2002, Refregier 2003).

The polar version of shapelets (Massey & Refregier 2005)

In image processing problems the (linear) Tikhonov oper&to royides a more “natural” orthonormal basis for broadlgeiar
is usually chosen to be a high-pass filter to favour “smooth” Sprofiles

lutions. PSFEk adopts a slightly dferent approach by reducing
T to a scalar weight /lrf, and performing a procedure in two (_1)"%m n—im (r2
- -

_ 2 am)
steps. Ynm(r, 0) = A (g2

)X(L)m e H(5)-m (g)
g
1. PSFk makes a first rough estimate of the PSF by simply @ 7or )
shifting point-sources to a common grid and computinghere @ — |m)/2 € N and Ly”(x) is the associated Laguerre
a median image©. With undersampled data this imagePolynomial
represents a smooth version of the real PSF. 1 dn
L9(x) = Hx"’e"ﬁ(x’”"e’x) (10)
2. Instead of fitting directly the model to pixel values, PSFE n (@ + !
- : 0 !
fits the diferenceAg between the model angl®). E(¢) be- _ Z @+ (=X, (11)
k=0

comes Kl(n—K)!(a + K)!
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because of the non-linear dependency of PSF vector comtsonen
towards warping parameters. Instead, we can extend theform
ism of (6) by describing the PSF as a variable, linear combina
tion of PSF vectorg; each of them associated to a basis func-
tion X. of some parameter vectarike image coordinates:

fo 2o Xo(@) (¢20(x5) + A, (x5)))°

e - Yy P "

S i€Dg i
A

2
¢2°J. (13)
Ty
The basis function¥; in the current version of PSkEare
limited to simple polynomials of the components af Each
of these components, belongs to a “distortion group§y =
0,1,..., Ny, such that

Xe(a) = l_[

g<Ng [(Zle/\g d)<Dg

dj

a'l, (14)

whereA is the set of parameter indicéshat concern the dis-
tortion groupg, andDy € N is the polynomial degree of group
g. The product runs over all compatible combinations|of N
andg. The polynomial engine of PSkHs the same as the one
'. implemented in the SCAMP software (Bertin 2005) and can use
any set of Skrractor andor FITS header parameters as com-
C ponents ofa. Although PSF variations are more likely to de-

Fig. 2. Example of an extreme case of PSF recovéoy part of a sim- pend_ essenfually on source position on the focal plane itus
ulated star field image with strong undersampliBgttom, from left to possible to Inglyde e.Xp“C't dependency on parameters a.BCh
right: (a) simulated optical PSF, (b) simulated PSF convolvedhay t {€/€Scope position, time, or source flux (Fig. 4). In praztia
pixel response, (c) PSF recovered by PSEEA4.5 times the image res- third-degree polynomial on pixel coordinates (represihte20
olution from a random sample of 212 stars extracted in theilsited PSF vectors) is able to map PSF variations with good accuracy
field above, using the “pixel” vector basig. 1), and (d) PSF recovered on most images (Fig. 3).

using the “shapelet” basi§Z.2) withnma = 16.

3.2.

The number of shapelet vectors Withe Mimax is Accurate modelling of the PSF with the scheme describedabov

Nimax = (Nmax + 1) (Nmax + 2)/2. (12) involves a fairly large number of degrees of freedom, and is
therefore somewhat sensitive to noise in the point-souane s
Shapelet decompositions with finite < nnax are only able ple. This is especially notable in exposures with a small lnem
to probe a restricted range of scales. Refregier (2003)eguoof point sources, aridr where the PSF exhibits strong variations
fmin = 0/ VNmax+ L andrmax = o VNmax+ 1 as the standard over the field of view. Hopefully, one can drastically redtice
deviation of the central lobe and the whole shapelet prafile, number of degrees of freedom necessary to provide a good de-
spectively. In practice, the diameter of the circle encigghe scription of the PSF and its variations by using a vectorsasi
region where images can be fitted with shapelets is only abdetter suited to a specific instrument than the "genericéldnd
~ 2.5rmax. Hence modelling accurately both the wings and tt&hapelet bases describedgihl and§2.2.
core of PSFs with a unique set of shapelets requires a vggg lar It is easy to show (e.g. Theodoridis & Koutroumbas 2003)
number of shapelet vectors, typically several hundreds. that Principal Component Analysis (PCA) provides the basis
which requires the lowest number of vectors to approximate a
) o set of data (images) within a given Mean Square Error, assum-
3. Managing PSF variations ing the noise is additive and uncorrelated between imagea. P
has already been proposed and used by several authors fLupto
et al. 2001, Jee et al. 2007) to represent the PSF and its varia
Few imaging systems have a perfectly stable PSF, be it in tiiens. In these studies, the PCA is directly applied to actiele
or position; for most instruments the approximation of a-comf point-source images which have been re-centred by resam-
stant PSF is valid only on a small portion of an image at @ing. There are however some major drawbacks with this ap-
time. Position-dependentvariations of the PSF on the foeale proach. (1) It requires well-sampled images. (2) Becausheof
are generally caused by optics, and exhibit a smooth behavieast range of fluxes found among field stars, linear comlanati
which can be modelled with a low-order polynomial. derived from the PCA are sub-optimum in terms of signal-to-
The most intuitive way to generate variations of the PSkoise (unless a weighted PCA scheme is used). (3) PCA relies o
model is to apply some warping to it (enlargement, elongatio2"® order statistics and is therefore particularly sensitivedn-
skewness, ...). But this description is not appropriate WBFE  tamination from outliers. With the “direct” approach abotree

3.1. Basic formalism
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relative contribution from the various detections to thmé&ipal
Components is not tight to any parameter on which the PSF is
supposed to depend, like image coordinates (i.e. someadctritif
the centre of a frame contributes as much as an isolated; “gen
uinely distorted” point-source in the corner): outliers difficult
to filter out.

For all these reasons, the application of PCA in PSIE
not done directly on the data, but on model images from severa
exposures, reconstructed from ies derived in (13).

4. Selecting point-sources

Extracting the PSF from an astronomical image is much easier
than from an “everyday life” picture (see, e.g. Luxen & Roes
2002, Hall & Qiu 2007 and references therein), thanks to the
presence of unresolved sources (stars or quasars) oveeldhe fi
of view. Nevertheless, in some astronomical observatites,
fraction of suitable point sources that may be used as goed ap
proximations to the local PSF may be rather low. This is espe-
cially true for deep imaging in the vicinity of galaxy clusse

at high galactic latitudes, where unsaturated stars mayurdeen
only a small percentage of all detectable sources. In our teis
minimise as much as possible assumptions about the shape of
the PSF, we are left with the following selection criteria:

— the shape of suitable unresolved (unsaturated) sourceas doe
not depend on the flux.

Fig. 3. Example of PSF mapping as a function of pixel coordinates i~ @mongst the image profiles of all real sources, those from

PSF&. Top PSF component vectors for each polynomial term de- unresolved sources have the smallest FWHM.

rived from the CFHTLS-deep “D4” r-band stack observed witle t

MEGACAM camera. A third-degree polynomial was chosen fas th These considerations and experimentation led us to adopt as

example. Note the prominent variation of PSF width with thease starting point to selection a procedure similar to the megta

of the distance to the field centrBottom reconstruction of the PSF lar cut in the half-light-radiusrf) vs magnitude plane popular

over the field of view (the grey scale has been slightly cosgrd to  amongst member of the weak lensing community (Kaiser et al.

improve clarity). 1995).1y, is well estimated by SEractor’s FLUX_RADIUS pa-

rameter. In PSFEthe “vertical” locus produced by point sources

(whose shape does not depend on magnitude) is automatically

framed between a minimum signal-to-noise threshold and the

saturation limit on the magnitude axis, and within some rimarg

around the local mode on thg axis (Fig. 5). Additionally, to

provide a better rejection of image artifacts and multigdgots,

PSFKk excludes detections flagged by xSkacror as blended

or cropped and those with aspect ratios higher than somepred

fined limit (typically 2:1).

Despite the filtering process, a small fraction of the remain
ing point-sources candidates (typically 5-10% on grouadel
optical images at high galactic latitude) is still unsuléalo
serve as a realisation of the local PSF, because of conttiarina
by neighbour objects. Iterative procedures to subtracttre
tribution from neighbour stars have been successfullyiagpl

' — ' in crowded fields (Stetson 1987, Magain et al. 2007). However
these techniques do not solve the problem of pollution by non
stellar objects like image artefacts, a common curse of fiddiz

Fig. 4. Example of PSF mapping on images from a non-linear ima%:nagmg’ an_d cpntamlnated pomt-spurces still have to mw

ing device. 1670 point-sources from the central 4996096 pixels of OUt. The rejection process at play in PSREorks by deriving

a photographic density scan (SERC J #418 survey plate,esyudf @ first PSF model estimate, and computing a map of residuals

J. Guibert, CAl, Paris observatory) were extracted usingr®kror, from the fit by this model for each point-source (Fig. 6): each

and their images run through PSER sample is shown at thep-left  pixel of the map is the square of thefférence square of the

The PSF model was given & @legree polynomial dependency on thenodel with the data, divided by the? estimate from (4). The

instrumental magnitude measured byxSfcror (MAG-AUTO). Middle:  PSF model may still be “rough” at this stage, hence to avoid pe

PSF components derived by PSEBottom reconstructed PSF imagesn;|ising poorly fitted bright source pixels, the factois initially

as a function of decreasing magnitudiep-right sample residuals after ¢4 4 fairly large value, 0.1-0.3. Assuming that the figémrors

subtraction of the PSF-model. are normally distributed, and given the large number of eegr
of freedom (the tabulated values of the model), the distidiou




6 E. Bertinet al Modelling and characterising the PSF with PSFE

16 —

18 —

20 —

i mag

_2

24 —

\ \ \
0 2 4 6
r, [pixels]

Fig. 5. Half-light-radius ¢, estimated by Skrractor’s FLUX_RADIUS)
vs magnitudeAG_AUTO) for a 520s CFHTLS exposure at high galac
tic latitude taken with the Megaprime instrument in the i tafhe
rectangle enclosing part of the stellar locus represeetspproximate
boundaries set automatically by PS&# select point-sources.

of \/)? derived from the residual maps of point-sources is e
pected to be Gaussian to a good approximation. Contamin
profiles are identified using iterative— o clipping to the dis-

tribution of +/y2. Throughout our experiments, the value- 4

provided a consistent compromise between being too restric
and being too permissive. Fig. 6. Left some source images selected for deriving a PSF model of a

MEGACAM image (the basic rejection tests based on SExtrdlztgs
and measurements were voluntarily bypassed to increaskattteon
5. Quality assessment of contaminants in this illustrationRight map of residuals computed
. . . ) ) as explained in the text; bright pixels betray interlopé tosmic ray
Maintaining a certain level of image quality, and espegiBISF  hits and close neighbour sources.

quality, by identifying and rejecting “bad” exposures, isré-
ical issue in large imaging surveys. Image control must be au
tomatized, not only because of the sheer quantity of data in
modern digital surveys, but also to ensure an adequate dével
consistency. Automatized PSF quality assessment is ivaéit wherely is the central intensity of the PSE, the central coor-
ally done based on point-source FWHM and ellipticity measurdinates (in PSF pixelsWmax the PSF FWHM along the major
ments. Although this is certainlyffecient for finding fuzzy or axis, Wy, the FWHM along the minor axis, arlthe position
elongated images, it cannot make the distinction betwegrae. angle (6 free parameters). As a matter of fact, thefttdunc-
defocused image and a moderately bad seeing. tion provides a good fit to seeing-limited point-source iesg
In addition to the possibility to trace out the apparition cind to a lesser degree, to the core dfrdction-limited images
specific patterns using customized basis functions, RSFE for instrument with circular apertures (Truijillo et al. 200in
plements a series of generic quality measurements donesonrifost imaging surveys, the “right” instrumental PSF will ey
PSF model as it varies across the field of view. The main setgifilar to a Mdfat function with low ellipticity. Since PSFEis
measurements is done in PSF pixel space (oversampling fagtant to deal with significantly undersampled PSFs, andither
17) by comparing the actual PSF model veagorith a reference which we call “pixel-free” is also performed, where the ¥
PSF modep(x’). We adopt as a reference model the ellipticahodel is convolved with a square top-hat function the width o
Moffat (1969) function that fits best (in the chi-square sense) th physical pixel, as an approximation to the real intra4pize
model: sponse function. The (non-linear) fits are performed usigg t
NB LevMar implementation of the Levenberg-Marquardt aldorit
p(X) = |o(1 +[|ACX = x| ) , (15) (Lourakis 2004). They are repeated at regular intervals grida
with coordinates.

of PSF parameter vectoes generally composed of the image
c0S8/Wax sinG/WmaX) The average FWHMWmnax + Wiin)/2, ellipticity (Wmax —

4 1
A= n @7 - 1)( —SiNG/Wmin €088/ Whin (16) Winin)/ (Wiax+ Whin) @andg parameters derived from the fits pro-
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vide a first set of local I1Q estimators (Fig. 7). The secondssetTable 1. Simulation parameters
composed of the so-calledsidualsindex

Cosmology QOn,=03,Q, =07
> (¢i + p’(xi/)) |¢i —p' (X)) Galaxy luminosity functions Madgwick et al. (2003)
r=2 5 a7) Galaxy luminosity-density evolution Gabash et al. (2004)
> (¢i _,_p/(xi/)) Bulge sizes Bingelli et al. (1984)
Disk sizes de Jong & Lacey (2000)
and theasymmetryndex Bulge apparent ellipticities Sandage et al. (1970)
Disk apparent ellipticities caswith —85° < 6 < +85°
o2 (@i + on-i) i — -l Shearyy), N ~ -0.05—+0.05
=2 > > (18) Star and galaxy positions Poissonian distribution
Zi (61 + ¢n-i) Star magnitude range 17-26
where thepy_i’s are the point-symmetric counterparts to the ~ Star counts (expected) 2 dexp(Q2ixs) mag™.deg”
components. Photometric b_and i (Megaprime)
Phot. zero-point (“ADUs, per sec.”) iag = 25.72 mag
Sky background Hiss = 20.4 mag.arcseé
Exposure time 12x 300s
6. Use cases Pupil geom.(®3.6m primary(»1m obscuration,+'-shaped spider
6.1. Shear measurements Seeing (FWHM) 0.1-0:38
) . Defocalisation @go?) 0.0-0.53
The quality of weak shear measurements critically depends oastigmatism (iso?) 0.0-0.6
the mapping accuracy of PSF anisotropy. Earlier galaxp-elli Coma ls0?) 0.0-0.6
ticity recovery techniques would rely on the PSF's 2nd-orde Pixel scale 0.186
weighted moments only (Kaiser et al. 1995). More recent apConversion factor 1.6¢ADU
proaches require the full two-dimensional PSF model (Reins _Readout noise o€

& Jarvis 2002, Refregier & Bacon 2003, Miller et al. 2007). . . )
The absence of clearly visible residuals in PSF-subtracted diameter of the disk that contains 80% of the energy (ESO con-

bright star images is a testimony to the global accuracy al-mg’€ntion)

els derived with PSFE But the modelling process features no

constraint explicitely related to PSF ellipticity. We muisere- oo . .
fore assess whether the derived models are usable for stedar a4' Ayerage ellipticity components derived from the besir .
Sérsic parameters of all unsaturated, uncropped galaxies

%setlaswa:htgz'b{(%sIleecgl).requwed by today’s experiments¢afly with signal-to-noise ratie 20 (no weighting applied).
To this aim, we simulated 100 sets of realistic imaging datgtep 3 is performed using a prototype version okS&cTor,
each with a dferent (constant) PSF and random (constant) shegky fits (in they? sense) Sérsic models convolved with the lo-
applied to 27 square degrees of (virtual) sky. The simutatioc5| pSF model. We measure a standard deviation of individual
include photon noise as well as source crowding and were 98fiaxy ellipticitess; = 0.205. Since no weighting is applied to

erated using the1®rr” and SyMaker® software tools (Bertin measurements, the standard error on ellipticities avelrémea
2009). Galaxies are simulated as a sum of a bulge componght Jen galaxies is thereforey = 0.205/ YN

with de Vaucouleurs profile and an exponential disk. PSFgwer

. ! ; Concerns have recently been raised about the dangers of
extracted from a small sub-image with random size for every

asuring shear parameters by fitting single Sérsic mddels

re complex galaxy profiles (Voigt & Bridle 2010). A small
ctis indeed seen in our measurements, in the sense that shea
amplitudes are over-estimated by about 1.5% (Fig. 9). Tdvis c
responds to a maximumfiiérence oft7.10™* in the measured
nnnnununnuunnunnnunn shear with respect to the true value in our simulations. We co
rected for this fect by dividing the ellipticity measurements by
the slope in Fig. 9.

Figure 10 shows the shear residuals (measured shear with

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ truth values subtracted) obtained for the 100 sets, as difunc
ﬂﬂﬂﬂﬂﬂﬂﬂnﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ of various PSF characteristics. We observe that

Fig. 8. PSFs simulated for shear testing and modelled using RSFE  _ ng significant trend is found with PSF ellipticity, despitet
wide range of PSF shapes and aspect ratios (up to 2.3:1 1),
no trend is found with PSF FWHM either, even for signifi-
cantly undersampled images (FWH&R pixels),

— constant PSFs do not seem to require a large number of stars
1. Extract image sources in sub-images together with object as far as ellipticity measurements are concerned (someof th

set, in order to check the influence of the number of stars u g
to model the PSF. Table 1 contains the main parameters use‘i&g
the simulations, and the recovered PSFs are shown Fig. 8.

Finally, average shear values were derived for each simula-
tion set using the following typical, fully automated prdcee:

pixel info with SExTrRACTOR; models here were derived with only 3 stars),

2. Run PSFE with default settings on the previously extracted— there are hints of a small ellipticity biasv(1.10°3) for
catalogue to derive a (constant) PSF model, the most asymmetrical PSFs of the simulatian> 0.2).

3. Extract sources from the full simulations and fit 2- Hopefully, images with such extreme asymmetries are gen-
dimensional, PSF-convolved Sérsic models; erally discarded from imaging surveys.

2 Publicly available ahttp://astromatic.net/software/stuff To this aim, we extracted the PSFs from the three sets of

% Publicly available ahttp: //astromatic.net/software/skymakerealisations generated by the week lensing community fer th



8 E. Bertinet al Modelling and characterising the PSF with PSFE
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Fig. 7. Colour-coded maps of the PSF FWHM (left) and ellipticitygfri) generated by PSkHrom a CFHTLS-Wide exposure The map and
the individual Megaprime CCD footprints on the sky are pnésé in gnomonic projection (north is on top, east on the.I&f8F variations are
modelled independently on each CCD usingdggree polynomial (see text).
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Fig. 9. Recovered averaged ellipticitiés; ») as a function of shear truth values,.

Great'08 challenge (Bridle et al. 2009). As we are only ieté@d AcknowledgementsThis work is supported by grant 04-5500 (“ACI masse de
in estimating the amount of biases in the modeling of the PSfennées”) from the French Ministry of Research.

not in the measurement of

7. In practice
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